Abbasi, K. J., Lashari, A. A., & Golo, M. A. (2024).
Use of artificial intelligence as an online platform for English language teaching at tertiary level. Journal of Business and Policy Research, 3(2), p.502–510.
https://zenodo.org/records/14921342
Amado-Salvatierra, H. R., Chan, M. M., & Hernandez-Rizzardini, R. (2023
). Combining human creativity and AI-based tools in the instructional design of MOOCS: Benefits and limitations. IEEE Learning with MOOCS (LWMOOCS), p. 1-6.
https://ieeexplore.ieee.org/document/10306023
Anderson, L. W., & Krathwohl, D. R. (2001). A taxonomy for learning, teaching, and assessing: A revision of Bloom’s taxonomy of educational objectives: complete edition. Addison Wesley Longman, Inc.
Dick, W., Carey, L., & Carey, J. O. (2001). The systematic design of instruction (5th). New York: Longmann.
Dick, W., Carey, L., & Carey, J. O. (2015). The systematic design of instruction (8th ed.). Pearson
Dickey, E., & Bejarano, A. (2024).
GAIDE: A framework for using generative AI to assist in course content development. IEEE Frontiers in Education Conference (FIE), p. 1-9.
https://doi.org/10.48550/arXiv.2308.12276
Faccia, A., Ridon, M., Beebeejaun, Z., & Mosteanu, N. M. R. (2023).
Advancements and challenges of generative AI in higher educational content creation: A technical perspective. In Proceedings of the 2023 8th International Conference on Information Systems Engineering, p. 48-54.
https://doi.org/10.1145/3641032.3641055
Ghariz, G., Seghir, H., Boucetta, N., Boubih, S., Janati-Idrissi, R., & El Alaoui, M. (2024). The impact of artificial intelligence on improving text in the process of conceptualization in biology: Case of education sector. Journal of Theoretical and Applied Information Technology, 102(13), p. 5203-5214.
Hadyaoui, A., & Cheniti-Belcadhi, L. (2024).
Intelli frame: A framework for AI-driven, adaptive, and process-oriented student assessments. In Proceedings of the 20th International Conference on Web Information Systems and Technologies, p. 441-448.
https://doi.org/10.5220/0013070800003825
Hutchins, N. M., Biswas, G., & Zhang, N. (2020).
Domain-Specific modeling languages in computer-based learning environments: A systematic approach to support science learning through computational modeling. International Journal of Artificial Intelligence in Education, 30(4), p. 537–580.
https://doi.org/10.1007/s40593-020-00209-z
Kelley, D., & Kelley, T. (2013).
Creative confidence: Unleashing the creative potential within us all. Stanford Social Innovation Review.
https://doi.org/10.48558/xsa6-0f24
Koh, J. H. L., Chai, C. S., Wong, B., & Hong, H. Y. (2015).
Design thinking and education. In Design thinking for education, Springer, Singapore, p. 1–15.
https://doi.org/10.1007/978-981-287-444-3_1
Li, J., Fu, Z., Wang, J., Zhu, L., & Qian, F. (2024).
Integrating more-than-human perspectives in speculative prototyping based on actor network theory. In International Conference on Entertainment Computing. Cham: Springer Nature Switzerland, p. 383-398.
https://doi.org/10.1007/978-3-031-74353-5_33
Liu, D. (2024).
The impact and prospects of AI-generated content in educational environments. Transactions on Computer Science and Intelligent Systems Research, 6, p. 64-71.
https://doi.org/10.62051/7mewnb62
Luckin, R, & Holmes, W. (2016). Intelligence unleashed: An argument for AI in Education. UCL Knowledge Lab: London, UK.
Miles, M. B., Huberman, A. M., & Saldaña, J. (2014). Qualitative data analysis: A methods sourcebook (3rd ed.). SAGE Publications.
Morrison, G. R., Ross, S. J., Morrison, J. R., & Kalman, H. K. (2019). Designing effective instruction. John Wiley & Sons.
Ravarini, A., Canavesi, A., & Passerini, K. (2024).
From users to allies: exploring educator and generative AI roles in shaping the future of higher education. In 10
th International Conference on Higher Education Advances (HEAd’24). Valencia, p. 312-319.
https://doi.org/10.4995/HEAd24.2024.17345
Stake, R. (1995). The Art of Case Study Research. Cham: Springer.
Stefaniak, J. E., & Moore, S. L. (2024).
The use of generative AI to support inclusivity and design deliberation for online instruction. Online Learning, 28(3), p. 181-206.
https://doi.org/10.24059/olj.v28i3.4458
Shukla, M., Goyal, I., Gupta, B., & Sharma, J. (2024). A comparative study of ChatGPT, Gemini, and Perplexity. International Journal of Innovative Research in Computer Science & Technology, 12(4), p. 10-15.
https://doi.org/10.55524/ijircst.2024.12.4.2
Tuomi, I. (2024).
Beyond mastery: Toward a broader understanding of AI in education. International Journal of Artificial Intelligence in Education, 34(1), p. 20-30. doi:
https://doi.org/10.1007/s40593-023-00343-4
White, J., Fu, Q., Hays, S., Sandborn, M., Olea, C., Gilbert, H., Elnashar. A., Spencer-Smith, J., & Schmidt, D. C. (2023).
A prompt pattern catalog to enhance prompt engineering with ChatGPT. arXiv:2302.11382, Cornell University.
https://doi.org/10.48550/arXiv.2302.11382
Yin, R. K. (2017). Case study research and applications: Design and methods. Sage Publications.
Zhou, X., Tong, Y., Lan, X., Zheng, K., & Zhan, Z. (2021).
AI education in massive open online courses: A content analysis. In 2021 3
rd International Conference on Computer Science and Technologies in Education (CSTE), p. 80-85.
https://doi.org/10.1109/CSTE53634.2021.00023