Ahmed, F., & Rashid, A. (2021). Framework to select vital product design methodologies using a multicriteria decision tool for an industry segment. Advances in Materials and Processing Technologies, 7(2),
p. 343–351. https://doi.org/10.1080/2374068X.2020.1783945
Althuizen, N. (2021). Revisiting Berlyne’s inverted U‐shape relationship between complexity and liking:
The role of effort, arousal, and status in the appreciation of product design aesthetics. Psychology &
Marketing, 38(3), p. 481–503. https://doi.org/10.1002/mar.21449
Barrett, S. E., & Rugg, M. D. (1990). Event-related potentials and the semantic matching of pictures. Brain
and Cognition, 14(2), p. 201–212.
Belboula, I., Ackermann, C.-L., & Mathieu, J.-P. (2018). Product design and hierarchized persuasion
process: An application to three household electrical products. Recherche et Applications En Marketing
(English Edition), 33(4), p. 2–23. https://doi.org/10.1177/2051570718787133
Benaissa, B., & Kobayashi, M. (2023). The consumers’ response to product design: a narrative review.
Ergonomics, 66(6), p. 791–820. https://doi.org/10.1080/00140139.2022.2127919
Berlyne, D. E. (1973). Aesthetics and psychobiology. Journal of Aesthetics and Art Criticism, 31(4).
Bettels, J., & Wiedmann, K.-P. (2019). Brand logo symmetry and product design: The spillover effects on
consumer inferences. Journal of Business Research, 97, p. 1–9.
https://doi.org/10.1016/j.jbusres.2018.12.039
Blackwood, D. H. R., & Muir, W. J. (1990). Cognitive brain potentials and their application. The British
Journal of Psychiatry, 157(S9), p. 96–101.
https://doi.org/10.1192/S0007125000291897
Boucha, D., Amiri, A., & Chogueur, D. (2017). Controlling electronic devices remotely by voice and brain
waves. 2017 International Conference on Mathematics and Information Technology (ICMIT), p. 38–42.
https://doi.org/10.1109/MATHIT.2017.8259693
Buker, T., Schmitt, T., Miehling, J., & Wartzack, S. (2022). What’s more important for product design–
usability or emotionality? An examination of influencing factors. Journal of Engineering Design, 33(8–9),
p. 635–669. https://doi.org/10.1080/09544828.2022.2142902
Chew, L. H., Teo, J., & Mountstephens, J. (2016). Aesthetic preference recognition of 3D shapes using
EEG. Cognitive Neurodynamics, 10, p. 165–173. https://doi.org/10.1007/s11571-015-9363-z
Correll, J., Urland, G. R., & Ito, T. A. (2006). Event-related potentials and the decision to shoot: The role
of threat perception and cognitive control. Journal of Experimental Social Psychology, 42(1), p. 120–128.
de Tommaso, M., Pecoraro, C., Sardaro, M., Serpino, C., Lancioni, G., & Livrea, P. (2008). Influence of
aesthetic perception on visual event-related potentials. Consciousness and Cognition, 17(3), p. 933–945.
https://doi.org/10.1016/j.concog.2007.09.003
Diefenbach, S., & Hassenzahl, M. (2011). The dilemma of the hedonic–Appreciated, but hard to justify.
Interacting with Computers, 23(5), p. 461–472. https://doi.org/10.1016/j.intcom.2011.07.002
Ding, Y., Guo, F., Hu, M., & Cao, Y. (2017). Using event related potentials to investigate visual aesthetic
perception of product appearance. Human Factors and Ergonomics in Manufacturing & Service Industries,
27(5), p. 223–232. https://doi.org/10.1002/hfm.20704
Eilouti, B. (2023). A framework for integrating ergonomics into architectural design. Ergonomics in
Design, 31(1), p. 4–12. https://doi.org/10.1177/1064804620983672
Fouad, I. A. (2021). A robust and reliable online P300-based BCI system using Emotiv EPOC+ headset.
Journal of Medical Engineering & Technology, 45(2), p. 94–114.
Gilal, N. G., Zhang, J., & Gilal, F. G. (2018). The four-factor model of product design: Scale development
and validation. Journal of Product & Brand Management, 27(6), p. 684–700.
https://doi.org/10.1108/JPBM-11-2017-1659
Guo, F., Ding, Y., Wang, T., Liu, W., & Jin, H. (2016). Applying event related potentials to evaluate user
preferences toward smartphone form design. International Journal of Industrial Ergonomics, 54, p. 57–64.
https://doi.org/10.1016/j.ergon.2016.04.006
Guo, F., Wang, X., Liu, W., & Ding, Y. (2018). Affective preference measurement of product appearance
based on event-related potentials. Cognition, Technology & Work, 20, p. 299–308.
Handy, T. C., Smilek, D., Geiger, L., Liu, C., & Schooler, J. W. (2010). ERP evidence for rapid hedonic
evaluation of logos. Journal of Cognitive Neuroscience, 22(1), p. 124–138.
Hekkert, P., Snelders, D., & Van Wieringen, P. C. W. (2003). ‘Most advanced, yet acceptable’: Typicality
and novelty as joint predictors of aesthetic preference in industrial design. British Journal of Psychology,
94(1), p. 111–124. https://doi.org/10.1348/000712603762842147
Hemonnet-Goujot, A., & Valette-Florence, P. (2022). “All you need is love” from product design value
perception to luxury brand love: An integrated framework. Journal of Business Research, 139, p. 1463–
1475. https://doi.org/10.1016/j.jbusres.2021.10.066
Hou, G., & Lu, G. (2018). Semantic processing and emotional evaluation in the traffic sign understanding
process: evidence from an event-related potential study. Transportation Research Part F: Traffic
Psychology and Behaviour, 59, p. 236–243.
Honglun, H., Shouqian, S., & Yunhe, P. (2007). Research on virtual human in ergonomic simulation.
Computers & Industrial Engineering, 53(2), p. 350–356.
https://doi.org/10.1016/j.cie.2007.06.027
Jeang, A., Chiang, A. J., Chiang, P. C., Chiang, P. S., & Tung, P. Y. (2018). Robust parameters
determination for ergonomical product design via computer musculoskeletal modeling and multi-objective
optimization. Computers & Industrial Engineering, 118, p. 180–201.
https://doi.org/10.1016/j.cie.2018.02.013
Jiao-Jiao, W., Can-Qun, H., & Wen-Jing, X. (2014). Discussion on the coordination of aesthetics and
ergonomics based on the self-express in product design. 2014 International Conference on Economic
Management and Trade Cooperation (EMTC 2014), p. 46–52.
Ju, X., Li, M., Tian, W., & Hu, D. (2023). EEG-based emotion recognition using a temporal-difference
minimizing neural network. Cognitive Neurodynamics, p. 1–12. https://doi.org/10.1007/s11571-023-
10004-w
Kortum, P. (2024). When human factors fail: Intentional and unintentional bad designs. Ergonomics in
Design, 32(1), p. 62–65. https://doi.org/10.1177/10648046211033901
Kuber, P. M., & Rashedi, E. (2023). Designing a new forklift backrest: Role of adjustability in improving
operator comfort. Ergonomics in Design, 31(4), p. 4–13. https://doi.org/10.1177/10648046211002378
Kuo, C.-F., & Chu, C.-H. (2005). An online ergonomic evaluator for 3D product design. Computers in
Industry, 56(5), p. 479–492. https://doi.org/10.1016/j.compind.2005.02.002
Li, R., Qin, R., Zhang, J., Wu, J., & Zhou, C. (2015). The esthetic preference of Chinese typefaces–An
event-related potential study. Brain Research, 1598, p. 57–65.
Liberman-Pincu, E., & Bitan, Y. (2021). FULE—Functionality, usability, look-and-feel and evaluation
novel user-centered product design methodology—Illustrated in the case of an autonomous medical device.
Applied Sciences, 11(3), 985. https://doi.org/10.3390/app11030985
Liu, Y. (2003). Engineering aesthetics and aesthetic ergonomics: Theoretical foundations and a dualprocess research methodology. Ergonomics, 46(13–14), p. 1273–1292.
https://doi.org/10.1080/00140130310001610829
Lu, P., & Hsiao, S.-W. (2022). A product design method for form and color matching based on aesthetic
theory. Advanced Engineering Informatics, 53, 101702. https://doi.org/10.1016/j.aei.2022.101702
Ma, Q., Hu, L., & Wang, X. (2015). Emotion and novelty processing in an implicit aesthetic experience of
architectures: evidence from an event-related potential study. Neuroreport, 26(5), p. 279–284.
MahdiNejad, J.-D., Azemati, H., Sadeghi Habibabad, A., & Matracchi, P. (2021). Investigating the effect
of age and gender of users on improving spirituality by using EEG. Cognitive Neurodynamics, 15, p. 637–
647. https://doi.org/10.1007/s11571-020-09654-x
Marmolejo-Ramos, F., Barrera-Causil, C., Kuang, S., Fazlali, Z., Wegener, D., Kneib, T., De Bastiani, F.,
& Martinez-Florez, G. (2023). Generalised exponential-Gaussian distribution: A method for neural
reaction time analysis. Cognitive Neurodynamics, 17(1), p. 221–237.
Martín-Chinea, K., Ortega, J., Gómez-González, J. F., Pereda, E., Toledo, J., & Acosta, L. (2023). Effect
of time windows in LSTM networks for EEG-based BCIs. Cognitive Neurodynamics, 17(2), p. 385–398.
https://doi.org/10.1007/s11571-022-09832-z
Mizokuchi, K., Tanaka, T., Sato, T. G., & Shiraki, Y. (2023). Alpha band modulation caused by selective
attention to music enables EEG classification. Cognitive Neurodynamics, p. 1–16.
https://doi.org/10.1007/s11571-023-09955-x
Mumcu, Y., & Kimzan, H. S. (2015). The effect of visual product aesthetics on consumers’ price sensitivity.
Procedia Economics and Finance, 26, p. 528–534.
https://doi.org/10.1016/S2212-5671(15)00883-7
Naeini Sadeghi, H., Conti, G. M., Motta, M., Karuppiah, K., Mamaghani, N. K., & Jafarnejad, M. (2023).
Sustainable workplace: An integrated approach to industrial ergonomics and service design. Rivista
Italiana Di Ergonomia, 25, p. 13–27.
Norman, D. A. (2004). Emotional design: Why we love (or hate) everyday things. Civitas Books.
Orth, U. R., & De Marchi, R. (2007). Understanding the relationships between functional, symbolic, and
experiential brand beliefs, product experiential attributes, and product schema: advertising-trial
interactions revisited. Journal of Marketing Theory and Practice, 15(3), p. 219–233.
https://doi.org/10.2753/MTP1069-6679150303
Paradiso, S., Johnson, D. L., Andreasen, N. C., O’Leary, D. S., Watkins, G. L., Boles Ponto, L. L., &
Hichwa, R. D. (1999). Cerebral blood flow changes associated with attribution of emotional valence to
pleasant, unpleasant, and neutral visual stimuli in a PET study of normal subjects. American Journal of
Psychiatry, 156(10), p. 1618–1629. https://doi.org/10.1176/ajp.156.10.1618
Pleyers, G. (2021). Shape congruence in product design: Impacts on automatically activated attitudes.
Journal of Retailing and Consumer Services, 61, 101935. https://doi.org/10.1016/j.jretconser.2019.101935
Rabinovich, M., Bick, C., & Varona, P. (2023). Beyond neurons and spikes: cognon, the hierarchical
dynamical unit of thought. Cognitive Neurodynamics, p. 1–9. https://doi.org/10.1007/s11571-023-09987-3
Righi, S., Orlando, V., & Marzi, T. (2014). Attractiveness and affordance shape tools neural coding: insight
from ERPs. International Journal of Psychophysiology, 91(3), p. 240–253.
https://doi.org/10.1016/j.ijpsycho.2014.01.003
Sabir, S. S. (2020). Does product design stimulate customer satisfaction? Mediating role of affect. Asia
Pacific Journal of Marketing and Logistics, 32(6), p. 1255–1268. https://doi.org/10.1108/APJML-03-2019-
0216
Sadeghi Naeini, H., Jafarnejad Shahri, M., Koleini Mamghani, N., & Karmegam, K. (2023). WorkSatisfaction throughout Workplace design: An approach on Ergonomics and Hedonomics for Office Design.
Journal of Design Thinking.
Sagot, J.-C., Gouin, V., & Gomes, S. (2003). Ergonomics in product design: Safety factor. Safety Science,
41(2–3), p. 137–154. https://doi.org/10.1016/S0925-7535(02)00038-3
Saleh, B., Rasul, M. S., & Affandi, H. M. (2019). A content analysis on quality for CAD based product
design: Developing a framework for malaysian technical teacher training institute. Journal of Technical
Education and Training, 11(2).
Sameti, A., Koslow, S., & Mashhady, A. (2022). Are product design researchers and practitioners on the
same page? The way professional product designers view creative design. Journal of Product & Brand
Management, 31(6), p. 951–970. https://doi.org/10.1108/JPBM-07-2021-3560
Sun, X., Houssin, R., Renaud, J., & Gardoni, M. (2018). Towards a human factors and ergonomics
integration framework in the early product design phase: Function-Task-Behaviour. International Journal
of Production Research, 56(14), p. 4941–4953. https://doi.org/10.1080/00207543.2018.1437287
Suri, J. F., & Marsh, M. (2000). Scenario building as an ergonomics method in consumer product design.
Applied Ergonomics, 31(2), p. 151–157. https://doi.org/10.1016/S0003-6870(99)00035-6
Ursino, M., Cesaretti, N., & Pirazzini, G. (2023). A model of working memory for encoding multiple items
and ordered sequences exploiting the theta-gamma code. Cognitive Neurodynamics, 17(2), p. 489–521.
Vogel, E. K., & Luck, S. J. (2000). The visual N1 component as an index of a discrimination process.
Psychophysiology, 37(2), p. 190–203.
https://doi.org/10.1111/1469-8986.3720190
Wan, Q., Li, X., Zhang, Y., Song, S., & Ke, Q. (2021). Visual perception of different wood surfaces: An
event-related potentials study. Annals of Forest Science, 78, p. 1–18. https://doi.org/10.1007/s13595-021-
01026-7
Wang, X. (2022). Research on home product design and intelligent algorithm recommendation considering
ergonomics. Journal of Sensors. https://doi.org/10.1155/2022/1791269
Wang, Y. J., & Minor, M. S. (2008). Validity, reliability, and applicability of psychophysiological
techniques in marketing research. Psychology & Marketing, 25(2), p. 197–232.
https://doi.org/10.1002/mar.20206
Wu, J., Xing, B., Si, H., Dou, J., Wang, J., Zhu, Y., & Liu, X. (2020). Product design award prediction
modeling: Design visual aesthetic quality assessment via DCNNs. IEEE Access, 8, p. 211028–211047.
https://doi.org/10.1109/ACCESS.2020.3039715
Xu, W. (2014). Enhanced ergonomics approaches for product design: a user experience ecosystem
perspective and case studies. Ergonomics, 57(1), p. 34–51. https://doi.org/10.1080/00140139.2013.861023
Zeki, S. (2001). Artistic creativity and the brain. Science, 293(5527), p. 51–52.
https://doi.org/1126/science.1062331
Zhang, F., Yang, M., & Liu, W. (2014). Using integrated quality function deployment and theory of
innovation problem solving approach for ergonomic product design. Computers & Industrial Engineering,
76, p. 60–74.
https://doi.org/10.1016/j.cie.2014.07.019