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bstract 

This study investigates the feasibility of retrofitting a conventional 4-shaft broadloom into an 8-shaft system as a 

low-cost innovation for enabling complex woven structures in resource-constrained settings. Guided by a 

practice-based research design and the Double Diamond framework, the project employed Weave Point software to 

construct and simulate weave drafts, followed by practical modifications of the loom to test huck-a-back and honeycomb 

structures. The results indicate that shaft conversion is feasible, producing fabrics that displayed stable interlacements, 

structurally consistent selvedges, and distinctive patterns under trial conditions. Beyond its technical outcomes, the 

retrofit represents an example of appropriate technology, reducing reliance on costly imports, prolonging equipment life, 

and promoting sustainable textile practices. The study further highlights its educational value by expanding opportunities 

for students and artisans to explore advanced weaves, thereby strengthening problem-solving skills and design 

innovation. These findings suggest that loom retrofitting can serve as a replicable strategy for weaving education and 

small-scale textile enterprises, while contributing to broader discussions on sustainability and grassroots innovation in 

textile design. 
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Introduction 

The evolution of the weaving loom has been a pivotal force in textile technology, shaping fabric design and 

innovation across centuries. From its beginnings as a simple wooden frame to today’s sophisticated 

electronic weaving machines, the loom has undergone continual transformation, each stage expanding the 

creative and structural possibilities of fabric construction. Landmark developments, such as the power loom 

and the mill system of the Industrial Revolution, revolutionised textile production by enabling mass 

manufacture and the creation of complex, decorative fabrics like brocades (Buckley & Boudot, 2017). This 

historical trajectory illustrates how technological advancement, cultural exchange (Chervyakov, 2023), and 

innovative practice have consistently redefined the global textile industry, while traditional weaving 

methods continue to find relevance in modern contexts, including interior textile applications (Buckley & 

Boudot, 2017). 

A central determinant of woven fabric complexity lies in the number of shafts a loom possesses, as this 

directly governs the range of weave structures achievable. Historical precedents such as the Han Dynasty 

pattern loom highlight the longstanding recognition of shaft capacity as a critical factor in textile innovation 

(Kumpikaitė et al., 2015). An increased number of shafts permits a broader spectrum of weave patterns, 

including advanced twills and satins that require more than the basic four shafts typically available (Fazeli 

et al., 2016; Mamdouh et al., 2022). Such capabilities are essential for producing textiles with distinctive 

textures and enhanced aesthetic appeal in contemporary design and global markets.  

Yet, in resource-constrained environments, many small-scale weaving industries and educational 

institutions face significant limitations in accessing advanced multi-shaft looms. Ghana is highlighted here 

as one illustrative example, but similar limitations may have been documented in diverse regions, including 

parts of India, Nigeria, and other developing economies. A conventional 4-shaft broadloom, while adequate 

for basic weaves and simple twills, cannot accommodate the complex structures demanded by 

contemporary markets. This technological limitation restricts weavers’ capacity for innovation and 

diminishes competitiveness against industrial-scale production (Shenton, 2014; Basitha et al., 2022; Kumar 

& Singh, 2022).  

Consequently, artisans and students are often confined to simpler weave structures, hindering creative 

exploration, product diversity, and the development of high-value textiles. 

The necessity of the following literature review is therefore to establish the historical and technical context 

that explains why increasing shaft capacity remains a critical pathway for innovation in small-scale weaving. 

This review also identifies the knowledge gaps that justify the current investigation into low-cost 

mechanical modifications as a means of expanding weave complexity. 

This study responds to these challenges by introducing a design innovation that transforms an existing 4-

shaft broadloom into an 8-shaft system. Implemented through locally feasible mechanical adaptations, the 

modification doubles shaft capacity and enables the production of complex woven structures such as huck-

a-back, honeycomb, mock leno, and advanced twill derivatives. Beyond expanding structural and design 

capacity, this innovation represents a sustainable intervention, as it extends the functional life of existing 

looms, reduces dependence on costly imports, and fosters grassroots innovation within the textile education 

and artisanal practice sectors. In doing so, the study contributes to global discourses on sustainable textile 

development, appropriate technology, and circular design.  

This paper documents the transformation process, evaluates the functional performance of the modified 

loom, and discusses its wider implications for weaving education, artisan livelihoods, and sustainable 

innovation in the textile sector. Accordingly, this study addressed the following research question: Can a 

conventional 4-shaft broadloom be retrofitted into an 8-shaft configuration using locally available materials 

and methods to produce structurally stable complex woven fabrics? 
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Literature Review 

This section examines the evolution of loom technology and the pivotal role of shaft mechanisms in shaping 

woven fabric complexity. It highlights how increasing the number of shafts expands design versatility, 

enabling the creation of intricate structures such as twills, honeycomb, and huck-a-back. The review also 

identifies persistent challenges faced by small-scale weavers and educational institutions, particularly in 

resource-constrained contexts, where access to advanced multi-shaft looms remains limited. In response, 

the literature emphasises design-led mechanical innovations as practical solutions, underscoring their 

implications for enhancing textile education, fostering creativity, and promoting sustainable weaving 

practices. 

1. Evolution of Loom Technology 

Loom technology has undergone a profound transformation, evolving from simple hand-operated frames 

to today’s computerised weaving systems. This progression reflects both technological innovation and the 

cross-cultural exchanges that have historically shaped textile practices. Early looms, such as wooden frame 

devices used in Greek tapestry and Navajo blanket weaving, demonstrate the fundamental principles of 

interlacement (Benson & Warburton, 1986). Archaeological evidence from second-century BCE China, 

however, reveals advanced pattern looms capable of producing complex structures, challenging 

assumptions that sophisticated weaving developed only in later periods (Zhao et al., 2016). Similarly, 

India’s ancient handloom tradition illustrates the cultural depth of weaving, though it was severely disrupted 

during the colonial influx of factory-made textiles (Martins, 2017). 

The Industrial Revolution marked a pivotal shift, introducing mechanised looms that increased efficiency 

and enabled large-scale textile production. The power loom facilitated mass manufacturing, while the 

Jacquard mechanism automated intricate pattern weaving, revolutionising decorative textile production 

(Eroğlu & Orbak, 2019). By the twentieth century, electronic and computer-controlled looms further 

enhanced precision and expanded structural possibilities (Dionisio et al., 2020). These advances were not 

purely mechanical: they also reflected processes of cultural adaptation, with weaving techniques 

continually crossing boundaries and being reshaped by local traditions (Faruque & Islam, 2021). 

Despite the dominance of industrial machines, traditional weaving practices remain highly valued, 

particularly for their artisanal craftsmanship, which modern technology often struggles to replicate (Benson 

& Warburton, 1986). Contemporary textile production increasingly integrates these heritage techniques 

with modern innovations, seeking to balance efficiency with cultural preservation. From draw looms and 

Jacquard systems to today’s shaft-based mechanisms, each development has progressively expanded 

weaving capacity (Kumpikaitė et al., 2015). As Fazeli et al. (2016) note, the number of shafts became a 

decisive factor in determining structural possibilities, enabling satins, twills, and even double cloths. 

Scholars have emphasised that loom evolution is not merely technological but also cultural. For instance, 

traditional weaving practices embedded in communities often relied on looms adapted to local materials 

and design philosophies, demonstrating that loom design and cultural heritage are inseparable (Lin et al., 

2022). However, despite the long history of loom adaptation, the capacity to produce intricate structures 

has often remained restricted to large-scale or industrial contexts. This historical progression underscores 

that shaft development remains central to weaving innovation, and small-scale looms have frequently 

lagged in technological upgrades compared to industrial counterparts. 

The historical trajectory of loom evolution thus emphasises a central principle: technological change 

continually expands creative potential, yet traditional knowledge retains enduring relevance. This duality 

sets the stage for understanding the role of shaft mechanisms in defining weave complexity, which is 

explored in the following section. 
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2. Importance of Shaft Number in Weave Complexity 

The number of shafts in a loom is a fundamental determinant of its complexity and design capability, as it 

governs the independently controllable warp threads and thereby shapes achievable weave structures. Even 

on basic two-shaft looms, techniques such as duotone checkerboards can produce visually intricate effects 

(Ahmed, 2014). However, loom sophistication generally increases with shaft count, expanding both 

structural and aesthetic possibilities. 

Research demonstrates that shaft number influences not only fabric design but also craft specialisation and 

labour organisation within weaving cultures (O’Brian, 1999). From a technical standpoint, additional shafts 

enhance flexibility in interlacement, facilitating the production of textiles with both functional diversity and 

aesthetic refinement (Sychugov, 2022; Fazeli et al., 2016). For instance, Ahiabor et al. (2018) reported that 

integrating an auxiliary shaft into a four-shaft broadloom enabled the weaving of heavier plain and twill 

fabrics. While four-shaft looms have historically been the most common, enabling production of plain, twill, 

and some satin structures, scholars show that higher shaft numbers exponentially expand design options. 

For instance, Başaran and Bekiroğlu (2023) demonstrate that strategic lift sequencing on four-shaft looms 

can extend their functional limits, allowing the production of herringbone, pointed, and diamond patterns. 

However, such ingenuity highlights a paradox: while creativity can maximise existing tools, it cannot 

substitute for the structural flexibility inherently provided by additional shafts (Mamdouh et al., 2022).  

Innovations in shedding mechanisms further demonstrate how shaft design supports complexity. Lin (2023) 
notes that open-type Heald systems simplify pattern creation and improve warp shedding, while Vidgedor 

et al. (2024) highlight how retrofitted shedding mechanisms can enhance efficiency and design flexibility 

without abandoning cultural traditions. These examples illustrate how shaft technology both responds to 

market demands and sustains heritage weaving practices. 

Nevertheless, increasing shaft numbers is not without trade-offs. Overly complex configurations may lead 

to higher costs (Akinwonmi, 2011) or mechanical challenges in hand-operated looms (Ganesan et al., 2019). 

While higher shaft counts expand design possibilities, loom manufacturers and users must balance technical 

sophistication with economic viability and practical usability. 

Thus, shaft mechanisms represent both a practical and symbolic threshold. They are practical in defining 

fabric structures and symbolic in reflecting the technological readiness of weaving communities. The 

reliance on low-shaft looms in many regions illustrates a tension between cultural continuity and technical 

limitation, a gap that continues to inspire research into adaptive design strategies. 

3. Technological Constraints in Traditional and Small-Scale Weaving 

Technological limitations remain one of the most persistent barriers to the advancement and sustainability 

of traditional and small-scale weaving industries. These constraints are typically rooted in restricted access 

to modern equipment, inadequate technical expertise, limited financial resources, and socio-economic 

challenges that make the adoption of innovation difficult. 

Empirical studies consistently show that education and skill gaps significantly hinder the integration of 

modern weaving practices. For instance, in south-western Nigeria, 58% of weavers lacked technical skills 

and 87% lacked formal education, which constrained their ability to adopt modern weaving technologies 

(Dimitrovski et al., 2007). Similar challenges have been documented in Bhagalpur, India, and among Kente 

weavers in Ghana, where age and low literacy levels further obstruct innovation (Adegbite et al., 2011; 

Kumar & Singh, 2022). These constraints not only limit technical capacity but also slow intergenerational 

knowledge transfer, leaving weaving communities vulnerable to technological stagnation. In addition to 

education and training gaps, infrastructural and economic barriers further undermine productivity. Small-

scale weavers often struggle with inadequate weaving facilities, poor access to quality raw materials, and 

competition from technologically advanced power looms (Olive et al., 2021; Malarkodi et al., 2020; 

Divyanshi et al., 2022).  
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The COVID-19 pandemic exacerbated these vulnerabilities by disrupting supply chains and reducing 

market access (Divyanshi et al., 2022). Recent studies further emphasise that older and less-educated 

artisans face heightened difficulty in adopting modern weaving technologies, even when available (King et 

al., 2023). 

These multifaceted challenges are compounded by weak institutional support, ineffective government 

policies, and exploitative marketing practices dominated by middlemen, all of which reduce the profitability 

and resilience of weaving enterprises (Olive et al., 2021). As a result, many traditional looms remain 

structurally limited, unable to produce complex designs or diversify product lines due to the high costs, 

infrastructural deficits, and training barriers associated with accessing advanced looms (Kumar & Singh, 

2022). Consequently, the lack of technological adaptability significantly restricts creative innovation and 

market competitiveness in small-scale weaving industries (Shenton, 2014; Basitha et al., 2022). 

These findings highlight a systemic challenge: while industrial weaving advances rapidly, artisanal and 

small-scale weaving stagnates technologically. Importantly, these studies identify the problem but rarely 

propose cost-effective mechanical modifications as a solution. This omission is significant because low-

cost retrofitting could bridge the divide between tradition and modernity without requiring prohibitively 

expensive equipment. 

4. Design Innovation as a Bridge to Sustainable Textile Development 

Design innovation plays a critical role in advancing appropriate technology (AT) by offering sustainable, 

culturally relevant, and economically feasible solutions tailored to local needs. In the context of weaving, 

such innovation not only enhances productivity and efficiency but also fosters long-term community 

empowerment and resilience. Appropriate technology emphasises cost-effectiveness, local adaptability, 

and social relevance, ensuring that innovations align with the specific cultural and environmental conditions 

of the communities they serve (Patnaik & Bhowmick, 2018). Within textile design, this approach often 

involves modifying existing looms to enhance functionality without requiring costly or complex machinery 

(Pearce, 2012; Patnaik & Bhowmick, 2018). Simple interventions, such as the addition of extra shafts to a 

basic loom, exemplify frugal engineering, a method of creating practical, low-cost innovations that expand 

creative possibilities while remaining accessible. 

Grassroots innovations are particularly powerful in this regard. They empower local communities to 

improve tools and processes, leading to greater productivity, expanded design outcomes, and democratized 

access to advanced textile techniques (Bapat et al., 2023). In educational and small-scale production 

contexts, such innovations are essential in bridging the gap between traditional handweaving and modern 

design expectations. Design thinking further strengthens this process by equipping local innovators to 

generate solutions tailored to their immediate challenges, such as increasing loom efficiency or expanding 

weave complexity through simple structural modifications (Deyana et al., 2020). For example, Ahiabor et 

al. (2018) demonstrated this principle by designing and constructing a broadloom capable of weaving 

compound structures, thereby advancing the scope of handloom-woven textiles. 

However, integrating design innovation into AT is not without challenges. Its success depends on the 

availability of local resources, technical expertise, and stakeholder participation. Moreover, for such 

innovations to achieve sustainable impact, they must be sensitive to cultural, economic, and political 

contexts. When effectively implemented, design innovation functions as a bridge between tradition and 

modernity, enabling sustainable textile development that is locally grounded yet globally relevant. 

5. Loom Retrofitting: Implications for Education and Sustainable Textile Practice 

Hands-on loom modification in textile education fosters experiential learning, critical thinking, and 

problem-solving, enabling students to engage deeply with the mechanics of weave structures. Through 

prototyping and experimentation, learners bridge theory and practice, gaining skills that enhance their 

employability in the evolving textile industry (Örnekoğlu et al., 2022; Xie, 2022).  
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This approach aligns with broader educational goals that emphasise practical competence and design 

thinking as essential for innovation. 

Moreover, loom retrofitting aligns with global calls for sustainable textile production. Rather than 

discarding existing looms in favor of industrial imports, adapting current infrastructure reduces material 

waste, promotes affordability, and enhances local capacity (Islam et al., 2022; Congcong et al., 2021). 

Scholars emphasise that sustainability in weaving must go beyond materials to include the tools and 

methods themselves. Retrofitting embodies this approach by enabling weavers to innovate within their 

economic means. In cultural contexts such as Atayal weaving, integrating retrofit strategies has been shown 

to preserve heritage while fostering sustainable development through education (Shafie et al., 2021). Thus, 

loom modification functions as a dual strategy, supporting ecological responsibility while reinforcing 

cultural continuity. 

Despite these benefits, retrofitting faces notable challenges. Initial costs, technical expertise requirements, 

and uneven access to appropriate materials can hinder adoption, particularly in resource-constrained 

contexts. Furthermore, the effectiveness of retrofitting in meeting sustainability goals depends significantly 

on the technologies employed, local skills, and institutional support structures. 

This literature highlights the importance of shaft mechanisms for enabling complex woven structures and 

places of interest in design innovation as a means of overcoming technological limitations. Nevertheless, 

research on loom retrofitting remains scarce, with most studies either focusing on cultural preservation, the 

limitations of traditional looms, or industrial-scale innovation. This leaves a methodological gap where 

practical, grassroots-level solutions, such as adding shafts to traditional looms, are rarely documented or 

systematically evaluated. It is within this gap that the present study situates itself, aiming to demonstrate 

how low-cost modifications can generate structurally diverse fabrics while strengthening the sustainability 

and relevance of small-scale weaving. 

Methodology 

The methodology centres on transforming a 4-shaft loom into an 8-shaft configuration and assessing its 

technical performance, sustainability, and educational value. Through systematic modifications, sample 

weaving, and participant involvement, the study aims to demonstrate how design innovation can improve 

both the versatility of handlooms and the pedagogical experience in textile education. 

Research Design 

This study adopted a practice-based design research approach, guided by the Double Diamond Model of 

design (Spruce, 2021), which structures inquiry into four iterative phases: Discover, Define, Develop, and 

Deliver. In industrial design, this model has been shown to streamline processes by balancing divergent 

and convergent thinking, thereby enhancing efficiency and problem-solving (Saad et al., 2020). Within this 

framework, creative making functioned simultaneously as both process and inquiry, enabling reflective 

cycles of exploration, prototyping, and refinement. The double diamond design thinking model adopted for 

this study is shown in Figure 1. 

The Double Diamond was selected because its iterative cycles of divergence and convergence complement 

practice-based research, allowing reflective prototyping and systematic evaluation of design interventions. 

This makes it particularly suitable for mechanical retrofitting, where solutions must be developed through 

iterative making and tested against functional performance. 

In the Discover phase, the study identified the limitations of a 4-shaft broadloom in producing complex 

weave structures, drawing on literature and practical observations, and highlighted the need for affordable 

modification strategies. The Define phase articulated the design challenge of converting a 4-shaft 

broadloom into an 8-shaft configuration to expand pattern versatility while maintaining accessibility in 

textile education. 
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Figure 1: Double Diamond Design Thinking Model (Dwass, 2023). 

During the Develop phase, possible solutions were ideated and prototyped, with the loom retrofitted from 

a 4-shaft to an 8-shaft configuration as the central experimental intervention. Technical feasibility was 

assessed through iterative adjustments and testing. Finally, in the Deliver phase, the modified loom was 

validated through sample weaving exercises, which generated functional textiles and provided reflective 

insights into design innovation, sustainability, and pedagogical impact. 

As Gaver et al. (2022) highlight, practice-based research is inherently iterative, requiring cycles of 

reflection and adaptation that foster both innovation and knowledge production. Felix (2022) cautions, 

however, that maintaining scholarly rigour in such fluid processes is a challenge. To address this, the study 

integrated design-thinking principles (de Laat & Marten, 2019; Nanda & Wingler, 2020) as a structured yet 

flexible framework for problem-solving and innovation. 

This design model was therefore well-suited for balancing systematic inquiry with creative exploration, 

generating both functional outcomes and reflective insights into design innovation, sustainability, and 

textile education. 

Tools, Materials, and Equipment 

A standard 4-shaft broadloom was used as the base equipment. Additional pulleys, horses, shafts, lams, 

cords, treadles, and mechanical fittings were sourced locally for the modification. Weft yarns of cotton and 

polyester were employed in sample weaving to test different weave structures. Documentation tools 

included sketchbooks, cameras, and note-taking for recording the process. 

Tools are lightweight, manual equipment designed for specific tasks, requiring human effort and precision 

for efficiency and effectiveness, which are essential for construction and repair work (Industrial Mega Mart, 

2024). The tools in Figure 2 were used in the retrofitting of the 4-shaft broadloom. 

 
Figure 2: a.  Drilling machine, b.  Hacksaw, c. Clamp, d. Tape measure, e. Chisel, f. Hammer. 
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According to Habibov (2023), materials are the substances or components that are processed or transformed 

during manufacturing or construction. In the context of retrofitting the 4-shaft loom, Figure 3 exhibits the 

materials used during the process. 

 
Figure 3: a.  Odum wood, b.  Metal bars, c. Bolts and nuts, d. Cotton cords. 

Again, Habibov (2023) highlights that equipment encompasses machinery and tools used to perform tasks 

or processes. The 4-shaft broadloom was the machine used in weaving fabrics and had to be modified into 

an 8-shaft system for complex structures. The 4-shaft broadloom is shown in Figure 4. 

 
Figure 4: A 4-shaft Broadloom (Source: Textile Weaving Shed – KNUST, 2025) 

Loom Modification Procedure 

The modification followed an iterative design process: 

1. Design and Planning 

Technical adjustments were first sketched to guide the conversion of a 4-shaft loom into an 8-shaft 

configuration. The original loom comprised 2 pulleys, 4 horses, 4 shafts, 4 lams, and 6 treadles, forming 

the vertical connection responsible for the shedding mechanism. In this setup, 2 treadles controlled the plain 

weave while the remaining 4 were used for twill designs. The main objective was to transform this 4-shaft 

system into an 8-shaft mechanism by doubling the vertical connections. This required expanding the loom 

structure to include 4 pulleys supporting 8 horses, which were connected to 8 shafts via 8 lams. These were 

then tied to 8 design treadles and 2 plain treadles, making a total of 10 treadles. This new configuration 

provided the technical framework for upgrading the 4-shaft broadloom to an 8-shaft broadloom. Figure 5 

illustrates the transformation between the shedding mechanisms of the two systems. 
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Figure 5: Technical transformation of the shedding mechanism between a 4-shaft and an 8-shaft broadloom. 

2. Construction and Retrofitting 

Based on the technical plan, additional wooden components (pulleys, lams, and treadles) were fabricated 

to match the existing loom dimensions and maintain structural balance. The new horses and shafts were 

integrated into the frame, ensuring alignment with the original shedding system. All moving parts were 

reinforced to withstand increased mechanical tension during weaving. Figure 6 presents the technical plan 

and various parts of the assembly and adjustment. 

 
Figure 6: a. Pulleys, b. Horses, c. Shafts (with healds), d. Lams, e. Treadles. 

3. Assembly and Adjustment 

The expanded shedding system was installed, connecting pulleys to horses and to shafts via lams to treadles. 

Careful adjustments were made to ensure even tension distribution and precise shaft movement. The 

treadles were tied up according to planned weave sequences, allowing both plain weave and complex 

patterned designs to be produced. Figure 7 shows the assembly and adjustment process. 



 

Design Innovation in Broadloom Weaving: Transformation of a 4-Shaft Loom  

to an 8-Shaft Loom for Complex Woven Structures                                                  JDT, Vol. 5, No. 2, December 2024  344 

 
Figure 7: Connecting and adjusting the shedding mechanism of the 8-shaft broadloom. 

Adjustments were made to reduce friction, balance treadle pressure, and enhance the responsiveness of 

shaft lifting. Successful operation of all 10 treadles confirmed the feasibility of the 8-shaft conversion. The 

retrofitted 8-shaft broadloom after final assembly and inspection is shown in Figure 8.  

 
Figure 8: The Retrofitted 8-shaft broadloom. 

4. Production of Fancy Weaves with Retrofitted 8-Shaft Broadloom 

Following the adjustments and preliminary trials, the modified loom was evaluated through the production 

of complex weave structures, specifically huck-a-back and honeycomb. These designs were selected to test 

the loom’s capacity for clarity, structural stability, and overall technical feasibility. The weaving process 

was undertaken in two stages: warp preparation and weft preparation, which are detailed in Sections. 

 
Figure 9: Warp Preparatory Processes. 
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Warp Preparatory Processes 

Under warp preparation, the following processes were executed sequentially to complete the warp 

preparatory processes. Figure 9 outlines the respective processes of warp preparation in the study. It was 

essential to construct the weave structures to examine the relationship among their core elements: design, 

draft, tie-up, and treadling order. For this purpose, Weave Point software was employed to develop huck-

a-back and honeycomb weaves, generating their respective design parameters. The resulting structures are 

presented in Figure 10. 

 
Figure 10: a. Huck-a-back design, b. Honeycomb design. 

The warp ends were calculated to ensure equal distribution of colour patterns across the respective weave 

designs. Shrinkage was factored in as a critical element affecting the final fabric width, alongside reed size 

and intended woven width. The calculation followed the formula: 

No. of ends = (width of fabric x reed size) + (2 x Selvedge) 

No. of ends = (34 inches x 32-inch reed) + (2 x 32) 

No. of ends = 1088 + 64 

No. of ends = 1152 ends 

Based on this total, warp colours were distributed evenly according to yarn thickness and colour sequence. 

The design process also considered principles of balance and harmony to achieve aesthetically coherent 

arrangements. The final warp colour plan, detailing the number of yarns per colour in each repeat, is 

presented in Table 1.  

Table 1: A Table Showing Warp-End-Colour Distribution Pattern of Weaves. 

Colour No. of ends Colour No. of ends 

Ash 12 Orange 16 

White 8 Light Orange 16 

Black 4 Yellow 16 

Unit Total Ends 24 Cream 16 

  Yellow 16 

  Light Orange 16 

  Orange 32 

  Yellow 32 

  Cream 32 

  Yellow 32 

  Light Orange 32 

  Unit Total Ends 228 
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After determining the total number of ends in the warp required for the woven fabrics, milling was 

undertaken. Cotton spun yarns were wound on a warping mill to establish both warp length and the 

necessary crosses for shed formation during weaving. The calculated warp colour ends were counted in 

orderly succession to complete the total ends of each weave design. Following milling, the warp was 

removed by chaining, a process that secures the long warp length and prepares it for subsequent raddling 

and beaming.  

At the raddling stage, warp ends were distributed evenly into the raddle dents based on the reed size - 32. 

During this process, 16 ends were inserted per 2 raddle dents to correspond to one inch of reed width. The 

warp was then stretched under tension with the drag box to bring the crosses forward. Parallel orientation 

of warp ends was checked, and any entanglement or loose ends were corrected to ensure uniform tension 

across the warp during winding onto the warp beam. Beam sticks were inserted to separate layers, 

facilitating smooth let-off during weaving. 

Heddling followed, where individual warp ends were drawn through the Heald eyes of the shafts according 

to the respective weave drafts generated in Weave Point. This order of threading, known as the heddling 

order, for the Huck-a-back and Honeycomb structures, is illustrated in Figures 11 and 12. 

 
Figure 11: Heddling order of Huck-a-back.                                          Figure 12: Heddling order of Honeycomb. 

The next step, reeding, involved passing the heddled warp ends through the reed dents. Doubling was 

applied only at the fabric selvedges to reinforce and produce neat woven edges. Subsequently, the shafts 

were tied through the lams to their corresponding treadles, while the reeded warp ends were fastened to the 

cloth beam. This ensured correct design execution during weaving, as each treadle depression 

simultaneously lowered the connected shafts to form the shed. The tie-up structures are shown in Figures 

13 and 14, and their numerical representations are summarised in Table 2. 

 
Figure 13: Huck-a-back tie-up arrangement.                                        Figure 14: Honeycomb tie-up arrangement. 
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The stepping orders employed were as follows: 

▪ Huck-a-back: /1,2,1,2,1/3,4,3,4,3/5,6,5,6,5/7,8,7,8,7/ 

▪ Honeycomb: /1,2,3,4,5,6,7,8/7,6,5,4,3,2/ 

These stepping orders indicate the numerical sequence of treadle operation, whereby depressing a treadle 

lowers the connected shafts, leaving others raised, thereby creating the shed for weft insertion and beat-up. 

These cycles, repeated continuously, constituted the primary motions of weaving until the desired fabric 

length was achieved. 

Table 2: A table showing the Tie-up Arrangements of Shafts to Treadles. 

Huck-a-back Tie-up Order Honeycomb Tie-up Order 

Treadles (T) Shafts (S) Treadles (T) Shafts (S) 

T1 S2/S3/S6/S7 T1 S1/S3/S4/S5/S6/S7 

T2 S1/S2/S4/S5/S6/S8 T2 S2/S4/S5/S6/S8 

T3 S1/S4/S5/S8 T3 S3/S5/S6/S7 

T4 S2/S3/S4/S6/S7/S8 T4 S4/S6/S7/S8 

T5 S2/S3/S6/S7 T5 S5/S7 

T6 S1/S2/S4/S5/S6/S8 T6 S1/S6/S8 

T7 S1/S4/S5/S8 T7 S2/S7 

T8 S2/S3/S4//S6/S7/S8 T8 S3/S8 

Finally, tying the warp yarns to the cloth beam secured the uniform tension necessary for consistent shed 

formation. Warp ends were tied in groups against the apron stick attached to the cloth beam, completing 

the warp preparation for weaving. The warp preparation processes are exhibited in Figure 15. 

 
Figure 15: a. Milling, b. Chaining, c. Raddling, d. Beaming (Completed), e. Heddling, f. Denting/Reeding, g. Lam-treadle tie-up, h. Warp 

ends-cloth beam tie-up. 

Weft Preparatory Processes 

The preparation of the weft yarns was essential to ensure smooth insertion during weaving and to achieve 

a uniform fabric appearance and structural stability. The processes involved winding weft yarns onto 

bobbins and shuttle loading. The yarns were wound onto pirns or bobbins using a bobbin winder. This 

process ensured that the yarn was tightly and uniformly packed, thereby allowing smooth release within 

the shuttle during weft insertion. Care was taken to maintain consistent yarn tension to avoid loose or overly 

stretched sections, which could compromise fabric uniformity. The wound bobbins were then placed inside 

shuttles, ensuring proper alignment to enable free yarn delivery. The shuttle eye was checked to confirm 

that the yarn could unwind without obstruction. Multiple bobbins were prepared in advance to ensure 

efficiency and continuity during weaving. 
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Where coloured yarns were employed, the sequence of bobbin preparation followed the predetermined 

design plan to maintain colour order and achieve harmony in the woven pattern. The consistency in weft 

colour changes complemented the warp arrangement, thereby enhancing the aesthetic quality of the final 

fabric.  

 
Figure 16: A Tested Weave or Trial Weave Picks. 

Before commencing weaving, trial picks were inserted to test the free flow of the weft yarn from the shuttle 

and to confirm the absence of weak spots, knots, or tension irregularities. This is shown in Figure 16. Only 

after satisfactory performance was established were the prepared weft yarns used in weaving the Huck-a-

back and Honeycomb structures. 

Final Woven Fabrics 

After completing the weaving processes, the woven fabrics produced on the retrofitted 8-shaft broadloom 

represented the practical realisation of the Huck-a-back and Honeycomb weave structures. The final woven 

samples reflected the efficiency of the modified shedding mechanism as well as the accuracy of the 

preparatory processes. 

The Huck-a-back fabric (Figure 17) exhibited clearly defined floats and cell-like textures characteristic of 

the structure, while the Honeycomb fabric (Figure 18) showed the three-dimensional cellular effects that 

give the weave its depth and geometric appearance. Objective examination showed that the woven samples 

maintained uniform warp tension across the width (variation within ±2 mm), no skipped threads were 

detected in lengths exceeding 1 meter, and float lengths remained consistent with the planned drafts. These 

indicators demonstrate that the fabrics were structurally sound under the trial weaving conditions.  

 
Figure 17: Huck-a-back woven fabric.                                                  Figure 18: Honeycomb woven fabric. 
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From an aesthetic perspective, the planned warp and weft colour distributions achieved harmony and 

balance in the woven samples. The interplay of colour and weave structures created fabrics that were both 

visually appealing and technically sound. Selvedges were firm due to the doubled warp threads at the edges, 

which enhanced neatness and durability. While these outcomes indicate the operational stability of the 

retrofit under trial conditions, further work is required to assess long-term durability, scalability, and 

efficiency under continuous production. 

Although the present study focused on the retrofitting and operation of an 8-shaft broadloom, it is important 

to situate these findings within the broader context of conventional 4-shaft looms commonly used in textile 

training and small-scale weaving. The 4-shaft loom, while widely accessible, is limited to basic weaves 

such as plain, twill, and basket designs. In contrast, the retrofitted 8-shaft broadloom employed in this study 

significantly expands the design scope, enabling the successful production of more complex structures like 

huck-a-back and honeycomb. This functional shift underscores the technical and creative advantages of 

retrofitting, even though a direct experimental comparison was beyond the scope of this work. To illustrate 

the distinction, Table 3 provides a conceptual summary of the main differences between 4-shaft and 8-shaft 

loom capacities, as reflected in both literature and practice. 

Table 3: Conceptual Comparison between Conventional 4-Shaft Loom and Retrofitted 8-Shaft Broadloom. 

Feature / Parameter 4-Shaft Loom (Conventional) 
Retrofitted 8-Shaft Loom 

(This Study) 

Maximum weave structures Plain, Twill, Basket Huck-a-back, Honeycomb, Complex Derivatives 

Design flexibility Limited Expanded (greater motif clarity) 

Shaft-treadle configuration Simple, fewer variations Complex, multiple treadling sequences 

Pattern clarity Moderate Enhanced (higher definition of motifs) 

Educational/Training application Introductory weave training Advanced structural and design exploration 

Industrial relevance Basic textile sampling Broader product innovation potential 

Discussion 

This section interprets the findings of the study in relation to the objectives and existing literature. While 

the preceding sections focused on the technical processes and outcomes of modifying a 4-shaft loom into 

an 8-shaft configuration, the discussion highlights the significance of these outcomes for weaving practice, 

textile education, and sustainable design innovation. 

The successful retrofit of doubling pulleys, horses, shafts, lams, and treadles to achieve coordinated 8-shaft 

shedding demonstrates that appropriate, low-cost design interventions can extend the capability of existing 

looms. In practical terms, this marks a significant step beyond the baseline 4-shaft system, which is 

structurally constrained to plain, twill, and other fundamental weaves. By contrast, the retrofitted 8-shaft 

configuration unlocks a wider repertoire of interlacements and float manipulations, situating the loom 

within a higher functional class while retaining affordability and serviceability. This aligns with appropriate 

technology principles that prioritise locally serviceable, cost-effective solutions (Pearce, 2012; Patnaik & 

Bhowmick, 2018) and responds to the access constraints documented in small-scale and educational 

contexts (Kumar & Singh, 2022; Shenton, 2014; Basitha et al., 2022). Methodologically, the iterative 

diagnose–prototype–adjust cycle reflects the Double Diamond’s structured divergence/convergence and 

supports disciplined rigour within practice-based inquiry (Spruce, 2021; Saad et al., 2020; Gaver et al., 

2022; Felix, 2022; de Laat & Marten, 2019; Nanda & Wingler, 2020). Prior work similarly shows that 

added shaft capacity or auxiliary mechanisms enable more demanding constructions (Ahiabor et al., 2018). 

Fabric trials of huck-a-back and honeycomb weaves exhibited clear pattern definition and structural 

stability, consistent with the established relationship between shaft number and weave complexity: 

additional shafts expand the set of possible interlacements and float paths (Fazeli et al., 2016; Mamdouh et 

al., 2022; Kumpikaitė et al., 2015).  
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While four shafts can accommodate limited patterning through careful lift sequencing (Başaran & 

Bekiroğlu, 2023), such attempts often compromise clarity and motif stability. In this study, the 8-shaft 

retrofit achieved distinct cellular and geometric effects with improved dimensionality, affirming the 

comparative advantage of extended shaft capacity as opined by (Mamdouh et al., 2022; Fazeli et al., 2016). 

The study’s incremental tie-up and treadling refinements reflect best-practice optimisation of shedding 

efficiency (Lin, 2023; Vidgedor et al., 2024). Minor operational challenges, such as balancing tensions 

across added shafts, are typical of hand-loom adaptations and are addressable through iterative adjustment, 

as cautioned in studies on hand-loom mechanics (Ganesan et al., 2019). 

Positioning the retrofit within practice-based research allowed making to serve as both method and evidence, 

deepening understanding of structure–mechanism relationships (Gaver et al., 2022; Felix, 2022). In 

educational settings, this shift from a 4-shaft to an 8-shaft reinforces the pedagogical trajectory from 

foundational weave knowledge toward advanced structural design. The retrofit, therefore, not only 

broadens technical capability but also strengthens experiential learning, problem-solving, and 

employability-relevant competencies (Örnekoğlu et al., 2022; Xie, 2022). By enabling complex structures 

on affordable equipment, the retrofit grants access to advanced weave explorations otherwise limited by 

cost and infrastructure (Kumar & Singh, 2022; Shenton, 2014; Basitha et al., 2022). 

Retrofitting an existing 4-shaft loom rather than procuring a new machine advances resource efficiency and 

equipment life-extension, echoing sustainability gains identified for retrofitting in textile contexts (Islam et 

al., 2022; Congcong et al., 2021; Shafie et al., 2021). As grassroots innovation, the modification leverages 

local materials and skills, reinforcing frugal, context-responsive design (Bapat et al., 2023; Deyana et al., 

2020) and the broader Appropriate Technology agenda (Pearce, 2012; Patnaik & Bhowmick, 2018). In 

regions where supply chains, skills, and finance constrain technology adoption (Adegbite et al., 2011; 

Divyanshi et al., 2022; Malarkodi et al., 2020; King et al., 2023), such interventions provide practical, 

scalable pathways to raise design capacity while sustaining cultural weaving practices (Faruque & Islam, 

2021; Vidgedor et al., 2024). For small-scale and cottage industries, the retrofit presents a replicable route 

to diversify products with higher value-added structures using existing infrastructure (Kumar & Singh, 

2022; Shenton, 2014). Economically, design choices must continue to balance complexity with practicality, 

mindful of cost and maintenance trade-offs (Akinwonmi, 2011; Ganesan et al., 2019). Future work could 

examine durability and throughput under extended use, explore further shaft expansion (e.g., toward 

double-cloth or satin derivatives noted in the shaft-complexity literature), and integrate digital drafting 

workflows more systematically (Fazeli et al., 2016; Mamdouh et al., 2022; Eroğlu & Orbak, 2019).  

Such trajectories would continue bridging traditional craftsmanship with modern design capability, a theme 

running through historical and contemporary loom development (Benson & Warburton, 1986; Kumpikaitė 

et al., 2015; Eroğlu & Orbak, 2019; Dionisio et al., 2020). 

The design interventions, sketching, iterative shaft additions, tie-up refinements, and systematic 

adjustments directly yielded the functional 8-shaft configuration validated through the production of huck-

a-back and honeycomb fabrics. This clear sequence from design ideation to woven samples demonstrates 

how the design process informed and shaped the outcomes. Thus, the conclusions drawn are grounded in 

the tested artefacts and their observed performance rather than assumptions. 

Conclusion 

This study investigated the feasibility and implications of retrofitting a 4-shaft broadloom into an 8-shaft 

system to enable the production of complex weave structures such as huck-a-back and honeycomb. Using 

a practice-based design approach guided by the Double Diamond framework, the research demonstrated 

that systematic inquiry through making can deliver both functional innovation and academic insight.  

The findings indicate that the retrofit was technically feasible and operationally stable under trial conditions, 

producing structurally sound fabrics with enhanced pattern definition.  
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While the original 4-shaft system limited weavers to plain weaves and simple twills, the expanded 8-shaft 

configuration enabled more diverse weave structures, thereby affirming the well-established relationship 

between shaft capacity and structural complexity. 

The broader significance of this work lies in its alignment with principles of sustainability and appropriate 

technology. By extending the lifespan and capacity of existing equipment, the retrofit offers a low-cost, 

locally serviceable alternative to imported multi-shaft looms. This contributes to circular design practices, 

reduces technological dependence, and enhances local capacity for innovation. In educational settings, the 

modification broadens opportunities for experiential learning in complex weave design, fostering problem-

solving skills and creative exploration essential for textile and design education. While initial trials show 

promising results, the study acknowledges that long-term durability, efficiency under extended use, and 

scalability require further investigation. These limitations suggest a cautious interpretation of the findings 

as evidence of feasibility rather than definitive proof of universal success. 
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